Introduction to Natural Language Processing

- HW1 posted on Thursday
- Any questions?
- Are you on eCommons and Piazza?
- If not, email me to get access (elahe@soe.ucsc.edu)

Main Goals for Week 2

Moving Beyond Words WORD CLASSES, LEXICAL INFORMATION TAGGING WORD SEQUENCES
 LANGUAGE MODELS (N-GRAMS)
 PROBABILITY AND CORPUS-BASED NLP REGULAR EXPRESSIONS: WRITING PATTERNS FOR PHRASES

Goals for Today

More WORDNET REVIEW: PROBABILITY STATISTICAL NLP CORPUS-BASED NLP

- Our first application: Classifying Text using features of the texts
- The features should give us 'abstractions' over the basic words in the text
- How to get there
- Learn how to produce featural descriptions of text
- Words, stemmed words, bigrams, POS, sentiment dictionaries, dictionaries, word sequences, POS sequences, other useful patterns
- These are abstractions of the basic words in the text that should support generalization to unseen cases

Example of featural description of text: Restaurant Review

The staff of the restaurant is nice and the eggplant is not bad. Apart from that, very uninspired food, lack of atmosphere apd too expensive. I am a staunch vegetarian and was sory y disappointed with the veggie options on the menu.

Category:

 Location

Lexical Resources

- A lexicon, or lexical resource, is a collection of words and/or phrases along with some associated information such as part of speech and sense definitions.
- A vocabulary (list of words in a text) is the simplest lexical resource
- Lexical entry

A lexical entry typically consists of a headword (also known as a lemma) along with additional information such as the part of speech and the sense definition.

- Unlike some lexical resources (like regular dictionaries) that have a flat semantic structure, WordNet is organized into an ONTOLOGY.
- Ontologies link concepts by LEXICAL RELATIONS
- IS-A relation creates a hierarchy of concepts

Figure 1. "is a" relation ex ample

The WordNet Hierarchy in NLTK

- A hyponym is a word or phrase whose semantic field is more specific than its hypernym.
- Hypernyms and hyponyms are called lexical relations because they relate one synset to another. These two relations navigate up and down the "is-a" hierarchy.

WordNet is in NLTK: Ch. 2, Sec. 5

- Using the WordNet API

```
\gg \text { from nltk. corpus import wordnet as wn}
>>> wn.synsets('motorcar')
[Synset('car.n.01')]
```

- Thus, motorcar has just one possible meaning and it is identified as car.n.01, the first noun sense of car.
- The entity car.n. 01 is called a synset, or "synonym set", a collection of synonymous words or "lemmas".

```
>>> wn.synset('car.n.01').lemma_names()
['car', 'auto', 'automobile', 'machine', 'motorcar']
```

- Synsets also come with a definition and some example sentences:

```
>> wn.synset('car.n.01').definition()
'a motor vehicle with four wheels; usually propelled by an internal combustion engine'
>>> wn.synset('car.n.01').examples()
['he needs a car to get to work']
```

- Definitions help understand the intended meaning of a synset.
- The words of the synset are often more useful: car.n.01.motorcar
- This pairing of a synset with a word is called a lemma
- get all the lemmas, look up a particular lemma, get the synset corresponding to a lemma , and get the "name" of a lemma

```
>>> wn.synset('car.n.01').lemmas ()
[Lemma('car.n.01.car'), Lemma('car.n.01.auto'), Lemma('car.n.01.automobile'),
Lemma('car.n.01.machine'), Lemma('car.n.01.motorcar')]
>>> wn.lemma('car.n.01.automobile')
Lemma('car.n.01.automobile')
>> wn.lemma('car.n.01.automobile').synset()
(3)
Synset('car.n.01')
>> wn.lemma('car.n.01.automobile').name()
'automobile"
```

- Some words are ambiguous and have more than one synset
- Car $\rightarrow 5$ synsets

```
>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'),
Synset('cable_car.n.01')]
>> for synset in wn.synsets('car'):
... print(synset.lemma_names())
* .
['car', 'auto', 'automobile', 'machine', 'motorcar']
['car', 'railcar', 'railway_car', 'railroad_car']
['car', 'gondola']
['car', 'elevator_car']
['cable_car', 'car'']
```

- Access all the lemmas involving the word car from all its synsets :

```
>>> wn.lemmas('car')
[Lemma('car.n.01.car'), Lemma('car.n.02.car'), Lemma('car.n.03.car'),
Lemma('car.n.04.car'), Lemma('cable_car.n.01.car')]
```

- It's very easy to navigate between concepts. For example, given a concept like motorcar, we can look at the concepts that are more specific; the (immediate) hyponyms.

```
>>> motorcar = wn.synset('car.n.01')
>>> types_of_motorcar = motorcar.hyponyms()
>>> types_of_motorcar[26]
Synset('ambulance.n.01')
>> sorted([lemma.name for synset in types of motorcar for lemma in synset.lemmas])
['Model_T', 'S.U.V.', 'SUV', 'Stanley_Steamer', 'ambulance', 'beach_waggon',
'beach_wagon', 'bus', 'cab', 'compact', 'compact_car', 'convertible',
'coupe', 'cruiser', 'electric', 'electric_automobile', 'electric_car',
'estate_car', 'gas_guzzler', 'hack', 'hardtop', 'hatchback', 'heap',
'horseless_carriage', 'hot-rod', 'hot_rod', 'jalopy', 'jeep', 'landrover',
'limo', 'limousine', 'loaner', 'minicar', 'minivan', 'pace_car', 'patrol_car',
'phaeton', 'police_car', 'police_cruiser', 'prowl_car', 'race_car', 'racer',
'racing_car', 'roadster', 'runabout', 'saloon', 'secondhand_car', 'sedan',
'sport_car', 'sport_utility', 'sport_utility_vehicle', 'sports_car', 'squad_car',
'station_waggon', 'station_wagon', 'stock_car', 'subcompact', 'subcompact_car',
'taxi', 'taxicab', 'tourer', 'touring_car', 'two-seater', 'used-car', 'waggon',
'wagon']
```


WordNet Search - 3.1
 - WordNet home page - Glossary - Help

Word to search for: motorcar
Search WordNet
Display Options: (Select option to change) Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Noun

- S: (n) car, auto, automobile, machine, motorcar
- direct hyponym / full hyponym
- S: (n) ambulance
- $\underline{S_{:}}(n)$ beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
- S: (n) bus, jalopy, heap
- S: (n) cab, hack, taxi, taxicab
- S: (n) compact, compact car
- S: (n) convertible
- S: (n) coupe
- $\underline{\text { S: }}$ (n) cruiser, police cruiser, patrol car, police car, prowl car, squad car
- S: (n) electric, electric automobile, electric car
- S: (n) gas guzzler
- S: (n) hardtop
- S: (n) hatchback
- S: (n) horseless carriaqe

WordNet: More Lexical Relations

- Another important way to navigate the WordNet network is from items to their components (meronyms) or to the things they are contained in (holonyms).
- For example, the parts of a tree are its trunk, crown, ...:

```
part_meronyms()
```

- The substance a tree is made of includes heartwood and sapwood :

```
substance_meronyms()
```

- A collection of trees forms a forest: member_holonyms ()

```
>> wn.synset('tree.n.01').part_meronyms ()
[Synset('burl.n.02'), Synset('crown.n.07'), Synset('stump.n.01'),
Synset('trunk.n.01'), Synset('limb.n.02')]
>> wn.synset('tree.n.01').substance_meronyms ()
[Synset('heartwood.n.01'), Synset('sapwood.n.01')]
>>> wn.synset('tree.n.01').member_holonyms()
[Synset('forest.n.01')]
```


WordNet: Semantic Similarity

- Synsets are linked by a complex network of lexical relations
- Traverse the WordNet network to find synsets with related meanings
- Knowing which words are semantically related is useful
- Grouping words into larger sets (generalization for sparse data in classification)
- Indexing a collection of texts
- search for a general term like vehicle will match documents containing specific terms like limousine
- Two synsets linked to the same root may have several hypernyms in common.
- Idea: If two synsets share a very specific hypernym (low down in the hierarchy) they must be closely related

WordNet: Semantic Similarity

- whale is very specific
- baleen whale even more specific
- vertebrate is more general and entity is completely general

```
```

>> right = wn.synset('right_whale.n.01')

```
```

>> right = wn.synset('right_whale.n.01')
>> orca = wn.synset('orca.n.01')
>> orca = wn.synset('orca.n.01')
>> minke = wn.synset('minke whale.n.01')
>> minke = wn.synset('minke whale.n.01')
>>> tortoise = wn.synset('tortoise.n.01')
>>> tortoise = wn.synset('tortoise.n.01')
>>> novel = wn.synset('novel.n.01')
>>> novel = wn.synset('novel.n.01')
>> right.lowest_common_hypernyms (minke)
>> right.lowest_common_hypernyms (minke)
[Synset('baleen_whale.n.01')]
[Synset('baleen_whale.n.01')]
>> right.lowest_common_hypernyms (orca)
>> right.lowest_common_hypernyms (orca)
[Synset('whale.n.02')]
[Synset('whale.n.02')]
>> right.lowest_common_hypernyms(tortoise)
>> right.lowest_common_hypernyms(tortoise)
[Synset('vertebrate.n.01')]
[Synset('vertebrate.n.01')]
>>> right.lowest_common_hypernyms (novel)
>>> right.lowest_common_hypernyms (novel)
[Synset('entity.n.01')]

```
```

[Synset('entity.n.01')]

```
```

- We can quantify the concept of generality by looking up the depth of each synset

```
>>> wn.synset('baleen_whale.n.01').min_depth()
14
>> wn.synset('whale.n.02').min_depth()
13
>>> wn.synset('vertebrate.n.01').min_depth()
8
>>> wn.synset('entity.n.01').min_depth()
0
```


WordNet: Semantic Similarity

- Similarity measures have been defined over the collection of WordNet synsets which incorporate this insight.
- For example, path_similarity assigns a score in the range 0-1 based on the shortest path that connects the concepts in the hypernym hierarchy
- Higher is more similar

```
>>> right.path_similarity(minke)
0.25
>> right.path_similarity(orca)
0.16666666666666666
>>> right.path_similarity(tortoise)
0.076923076923076927
>>> right.path_similarity(novel)
0.043478260869565216
```

- The numbers don't mean much, but they decrease as we move away from the semantic space of sea creatures to inanimate objects.

Further Reading:
 Learning Hyponym Relations from Text

- Automated Discovery of WordNet Relations, Marti A Hearst, 1998 (Book Chapter)
- searching for corresponding lexico-syntactic patterns in large text collections
(2) such NP as $\{N P,\}^{*}\{($ or \mid and $)\} N P$
... works by such authors as Herrick, Goldsmith, and Shakespeare.
\Longrightarrow hyponym("author", "Herrick"),
hyponym("author", "Goldsmith"),
hyponym("author", "Shakespeare")
(3) $N P\{, N P\}^{*}\{$,$\} or other N P$

Bruises, ..., broken bones or other injuries ...
\Longrightarrow hyponym("bruise", "injury"), hyponym("broken bone", "injury")

Review of Probability and Conditional Probability

Should have had this in CE 16
Many of you don't remember it

What is probability useful for?

Illore awesome nictures at BreakBrunch.com

- Statistical techniques for the automatic analysis of natural (human) language data
- Statistical NLP aims to do statistical inference for the field of NL

Statistical inference consists of taking some data and making some inference about its distribution

Language Model

- Statistical Language Model is a probability distribution over sequences of words.
- Given a sequence of words: $w_{1}, w_{2}, \ldots, w_{m}$
- assigns a probability to the whole sequence:

$$
P\left(w_{1}, w_{2}, \ldots, w_{m}\right)
$$

- can be used to predict the next word
- Corpus-based (data-driven) approach
- Compute probability of a sequence of tokens from data
- Make inference from data
- Probability theories will help us estimate these numbers from data

Examples of Applications

- Machine Translation:
- P (high winds tonite) $>\mathrm{P}($ large winds tonite)
- Spell Correction
- The office is about fifteen minuets from my house
- $P($ about fifteen minutes from $)>P($ about fifteen minuets from)
- Speech Recognition
- P(I saw a van) >> P(eyes awe of an)
+ Summarization, Question-Answering, etc., etc.!!

Definition of Probability

- Probability theory encodes our knowledge or belief about the collective likelihood of the outcome of an event.
- We use probability theory to try to predict which outcome will occur for a given
 event.

Sample Spaces

- We think about the "sample space" as being set of all possible outcomes:
- For tossing a coin, the possible outcomes are Heads or Tails.
- For competing in the Olympics, the set of outcomes for a given contest are \{gold, silver, bronze, no_award\}.
- For computing part-of-speech, the set of outcomes are \{JJ, DT, NN, RB, ... etc.\}
- We use probability theory to try to predict which outcome will occur for a given event.

Slide adapted from Dan Jurafsky's

- We flip a fair coin
- What are the possible outcomes (sample space)?
- Heads (H) or Tails (T)
- Either is equally likely
- What are the chances of getting H ?
- One out of two

- $P(H)=1 / 2=0.5$
- We roll a dice. What are the chances of getting an even number?
- There are six possible outcomes from rolling a dice, each with a 1 out of 6 chance:
$\{1,2,3,4,5,6\}$
- There are 3 simple outcomes of interest making up the compound event of interest:
- even numbers: $\{2,4,6\}$
- any of these qualifies as "success"
- effectively, we can be successful 3 times out of 6

$$
P(\text { Even })=3 / 6=0.5
$$

More Example

- We write a random number generator, which generates real numbers randomly between 0 and 200.
- Numbers can be decimals - Valid outcomes: 0.00002, 148.16, 4, ...
- The set of possible outcomes is
- infinite
- uncountable (continuous)
- We use Ω to denote the total set of outcomes, our event space
- Can be infinite! (cf. the random number generator)
- Discrete event space: events can be identified individually (throw of dice)
- Continuous event space: events fall on a continuum (number generator)
- We view events and outcomes as sets

Venn diagram representation of dice-throw example

- Possible outcomes: \{1,2,3,4,5,6\}

Outcomes of interest (denoted A): \{2,4,6\}

Probability: classical interpretation

- Given n equally possible outcomes, and m events of interest, the probability that one of the m events occurs is m / n.
- If we call our set of events of interest A , then:

$$
P(A)=\frac{|A|}{|\Omega|} \quad \begin{gathered}
\begin{array}{c}
\text { Number of events of interest } \\
\text { (A) over total number of } \\
\text { events }
\end{array}
\end{gathered}
$$

- Principle of insufficient reason (Laplace):
- We should assume that events are equally likely, unless there is good reason to believe they are not.

Compound vs. simple events

- If A is a compound event, then $P(A)$ is the sum of the probabilities of the simple events making it up:

$$
P(A)=\sum_{a \in A} P(a) \quad \begin{gathered}
\text { The sum of probabilities, for all elements } \\
\text { a of } \mathrm{A}
\end{gathered}
$$

- Recall, that $P($ Even $)=3 / 6=0.5$
- In a throw of the Dice, the simple events are $\{1,2,3,4,5,6\}$, each with probability $1 / 6$
- $P($ Even $)=P(2)+P(4)+P(6)=1 / 6$ * $3=0.5$

More rules...

- Since, for any compound event A:

$$
P(A)=\sum_{a \in A} P(a)
$$

the probability of all events, $P(\Omega)$ is:

$$
P(\Omega)=\sum_{e \in \Omega} P(e)=1
$$

(this is the likelihood of "anything happening", which is always 100% certain)

Yet more rules

- If A is any event, the probability that A does not occur is the probability of the complement of A :

$$
P(\bar{A})=1-P(A)
$$

i.e. the likelihood that anything which is not in A happens.

- Impossible events are those which are not in Ω. They have probability of 0 .
- For any event A:

$$
P(A) \in[0,1]
$$

Example: Throwing a dice

- $A=\{4\}$
- Probability that A does not occur
- complement of $A \rightarrow B=\{1,2,3,5,6\}$
- $P(B)=5 / 6$
- $P(A)=1 / 6$
- $P(B)=1-P(A)$
- Probability that the outcome of rolling a dice is 8
- Impossible!
- $P(\{8\})=0$
- Here's an even more complicated example:
- You flip a coin twice.
- Possible outcomes (order irrod vant).
- 2 heads (HH)

Only one way to obtain this: both throws give H

- 1 head, 1 tail (HT)
- 2 tails (TT)

Two different ways to obtain this:
$\{$ throw $1=\mathrm{H}$, throw $2=\mathrm{T}\}$ OR
$\{$ throw $1=\mathrm{T}$, throw2= H \}

Only one way to obtain this: both throws give T

- Are they equally likely?
- No!

Probability Trees

- Tree diagram may be used to represent a probability space
- Four equally likely outcomes:

Flip 2

- There are actually 4 equally likely outcomes when you flip a coin twice.
- HH, HT, TH, TT
- What's the probability of getting 2 heads?
- $P(H H)=1 / 4=0.25$
- What's the probability of getting head and tail?
- $P(H T O R T H)=2 / 4=0.5$

The stability of the relative frequency

Laplace's principle is not always true!

Teaser: violations of Laplace's principle

- You randomly pick out a word from a corpus containing 1000 words of English text.
- Are the following equally likely:
- word will contain the letter e
- word will contain the letter h

E is the most frequent letter in Engish orthography

The is far more frequent than audacity

- word will be audacity
- word will be the
- In both cases, prior knowledge or experience gives good reason for assuming unequal likelihood of outcomes.
- When the Laplace Principle is violated, how do we estimate probability?
- We often need to rely on prior experience
- In general, for language events, P is unknown
- We need to estimate P
- By looking at evidence about what P must be based on a sample of data
- Example:
- In a big corpus, count the frequency of e and h
- Take a big corpus, count the frequency of audacity vs. the
- Use these estimates to predict the probability on a new 1000word sample.

Example

- Suppose that, in a corpus of 1 million words:
- $\mathrm{C}($ the $)=50,000$
- $\mathrm{C}($ audacity $)=2$
- Based on frequency, we estimate probability of each outcome of interest:
- frequency / total
- $\mathrm{P}($ the $)=50,000 / 1,000,000=0.05$
- $\mathrm{P}($ audacity $)=2 / 1,000,000=0.000002$

Interpretation of probability

- The core assumption in statistical NLP, where we estimate probabilities based on frequency in corpora:

Given that a certain event of interest occurs \boldsymbol{m} times in \boldsymbol{n} identical situations, its probability is m / n

- Stability of relative frequency:
- we tend to find that if \boldsymbol{n} is large enough, the relative frequency of an event \boldsymbol{m} is quite stable across samples
- In language, this may not be so straightforward:
- word frequency depends on text genre
- word frequencies tend to "flatten out" the larger your corpus

Corpus Based Statistical NLP

- Based on counting in large corpora and developing different kinds of models
- It has become very popular these days
- This approach only became possible with the Web
- Google Translate: works because its seen tons of examples
- Spelling Correction: also works because its seen tons of examples of words in context
- Started out with simple word and POS based approaches, now NLP challenges more to do with meaning

More Probability...

- You flip 2 coins, what's the probability that you get at least one head?
- The first intuition:
- $P(H$ on first coin) $+P(H$ on second coin $)$
- $P(H)=0.5$ in each case, so the total P is 1
- What's wrong?
- We're counting the probability of getting two heads twice! ()
- Possible outcomes: $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- The $P(H)=0.5$ for the first coin includes the case where our outcome is HH . If we also assume $\mathrm{P}(\mathrm{H})=0.5$ for the second coin, this too includes the case where our outcome is HH . So, we count HH twice.

Venn diagram representation

Set A represents outcomes where first coin $=\mathrm{H}$.
Set B represents outcomes where second coin $=\mathrm{H}$
A and B are our outcomes of interest. (TT is not in these sets)

A and B have a nonempty
intersection, i.e. there is an event which is common to both. Both contain two outcomes, but the total unique outcomes is not 4, but 3.

$A \cup B=$ events in A and events in B
$A \cap B=$ events which are in both A and B
$P(A \cup B)=\substack{\text { occurs } \\ \text { oct }} \underset{\text { probability that something which is either in A OR B }}{ }$
$P(A \cap B)=$ probability that something which is in both A AND B occurs

Addition rule

- To estimate probability of A OR B happening, we need to remove the probability of A AND B happening, to avoid double-counting events.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- In our case:
- $P(A)=2 / 4$
- $P(B)=2 / 4$
- $P(A$ AND $B)=1 / 4$
- $P(A O R B)=2 / 4+2 / 4-1 / 4=3 / 4=0.75$

Conditional Probability \& Independence

Prior knowledge

Sometimes, an estimation of the probability of an event is affected by what is known (which changes the sample space)

- Example:

- A box of 10 candies
- 5 red and sweet, 3 green and sour, 2 green and sweet
- You close your eyes and randomly pick a candy, what is the probability that it is sweet?
- $7 / 10=0.7$
- After you pick the candy, you open your eyes and see it is red, now what is the probability that it is sweet?
- $5 / 5=1$

Part-of-speech tagging example

- One of the classic tasks in statistical NLP
- Assign a label indicating the grammatical category to every word in a corpus of running text.
- Statistical POS taggers are first trained on data that has been previously annotated. Yields a language model.
- Language models vary based on the n-gram window (size of the sequence):
- Unigrams: probability based on tokens (a lexicon)
e.g. input = the_DET tall_ADJ man_NN
model represents the probability that the word man is a noun (it could also be a verb)
- Bigrams: probabilities across a span of 2 words model represents the probability that a DET is followed by an adjective, adjective is followed by a noun, etc.
- Also: Trigrams, Quadrigrams, etc.
- Suppose we've trained a tagger on the annotated data. It has:
- a lexicon of unigrams:
- P (the=DET), $P($ man=NN), etc
- a bigram model
- $P(D E T$ is followed by ADJ), etc
- Assume we've trained it on a large input sample.
- We now feed it a new phrase:
- the audacious alien
- Our tagger knows that the word the is a DET, but it's never seen the other words.
- It can:
- Make a wild guess (not very useful!)
- Alternative: estimate the probability that the is followed by an ADJ, and that an ADJ is followed by a NOUN

Prior knowledge revisited

- Given that I know that the is DET, what's the probability that the following word audacious is ADJ?
- This is very different from asking what's the probability that audacious is ADJ out of context.
- We have prior knowledge that DET has occurred. This can significantly change the estimate of the probability that audacious is ADJ.
- We therefore distinguish:
- Prior probability: "Naïve" estimate based on long-run frequency
- The unconditional probability that is assigned before any relevant evidence is taken into account.
- Posterior probability: probability estimate based on prior knowledge after some observation
- The conditional probability that is assigned after the relevant evidence or background is taken into account.

Conditional Probability

- In our example, we were estimating:
- $P(A D J \mid D E T)=$ probability of ADJ given DET
- $P(N N \mid A D J)=$ probability of NN given ADJ
- In general:
- The conditional probability $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is the probability that A occurs, given that we know that B has occurred

Example continued

- If I've just seen a DET, what's the probability that my next word is an ADJ?
- Need to take into account two events:
- A: occurrences of ADJ in our training data
- VV+ADJ (was beautifu), PP+ADJ (with great concern), DET+ADJ etc
- B: occurrences of DET in our training corpus
- DET+N (the man), DET+V (the loving husband), DET+ADJ (the tall man)

Venn Diagram representation of the bigram training data

Estimation of conditional probability

- Intuition:
- $P(A \mid B)$ is a ratio of the chances that both A and B happen, divided by the chances of B happening alone

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- $P(A D J \mid D E T)=P(D E T+A D J) / P(D E T)$

Another example

- If we throw a dice, what's the probability that the number we get is even, given that the number we get is greater than 3?
- A: the number is even $\rightarrow\{2,4,6\}$
- B : the number is greater than $3 \rightarrow\{4,5,6\}$
- $A \cap B$: the number is even and is greater than $3 \rightarrow\{4,6\}$
- $P(A \mid B)=P(A \cap B) / P(B)$
- $\mathrm{P}($ even $\mid>3)=\mathrm{P}($ even $\cap>3) / \mathrm{P}(>3)$

$$
\begin{aligned}
& =(2 / 6) /(3 / 6) \\
& =2 / 3
\end{aligned}
$$

- Note the difference from simple, prior probability.

The Multiplication Rule

Multiplying probabilities

Often, we're interested in switching the conditional probability estimate around.

- Suppose we know $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ or $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
- We want to calculate P(A AND B)
- For both A and B to occur, they must occur in some sequence

Estimating P(A AND B)

$$
P(A \cap B)=P(A) P(B \mid A)
$$

Probability of A
happening overall

Probability of B happening given that A has happened

- We have a standard deck of 52 cards
- What's the probability of pulling out two aces in a row?
- Standard deck has 4 aces
- Let A1 stand for "an ace on the first pick", A2 for "an ace on the second pick"
- We're interested in P(A1 AND A2)

Example 1 continued

- $P(A 1$ AND $A 2)=P(A 1) P(A 2 \mid A 1)$
- $P(A 1)=4 / 52$
- (since there are 4 aces in a 52-card pack)
- If we do pick an ace on the first pick, then we diminish the odds of picking a second ace (there are now 3 aces left in a 51 -card pack).
- $P(A 2 \mid A 1)=3 / 51$
- Overall: $\mathrm{P}(\mathrm{A} 1$ AND A2) $=(4 / 52)(3 / 51)=.0045$
- in the event of A1, the chances of A2 are diminished
- the multiplication rule takes this into account
- In this example, the two events are not independent of each other
- occurrence of one affects likelihood of the other
- e.g. drawing an ace first diminishes the likelihood of drawing a second ace
- Sampling without replacement
- if we put the ace back into the pack after we've drawn it, then we have sampling with replacement
- In this case, the probability of one event doesn't affect the probability of the other.

Extending the multiplication rule

- The logic of the "A AND B" rule is:
- Both conditions, A and B have to be met
- A is met a fraction of the time
- B is met a fraction of the times that A is met
- Can be extended indefinitely
- E.g. chances of drawing 4 straight aces from a pack
- P(A1 \& A2 \& A3 \& A4)

$$
=
$$

$P(A 1) P(A 2 \mid A 1) P(A 3 \mid A 1$ \& 2) $P(A 4 \mid A 1 \& A 2 \& A 3)$

Extending The Addition Rule \& The Subtraction Rule

Extending the addition rule

- It was easy to extend the multiplication rule.
- Extending the addition rule isn't so easy. We need to correct for double-counting events.

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C) \\
& +P(A \cap B \cap C)
\end{aligned}
$$

Subtraction rule

- Fundamental underlying observation:

$$
P(A)=1-P(\bar{A})
$$

- E.g. Probability of getting at least one head in 3 flips of a coin (a three-set addition problem)
- Can be estimated using the observation that:
- $P($ Head out of 3 flips $)=1-P($ no heads $)=1-P(3$ tails $)$

Many tasks in NLP use these probability estimates

